11 research outputs found

    Science Impacts of the SPHEREx All-Sky Optical to Near-Infrared Spectral Survey: Report of a Community Workshop Examining Extragalactic, Galactic, Stellar and Planetary Science

    Full text link
    SPHEREx is a proposed SMEX mission selected for Phase A. SPHEREx will carry out the first all-sky spectral survey and provide for every 6.2" pixel a spectra between 0.75 and 4.18 μ\mum [with R\sim41.4] and 4.18 and 5.00 μ\mum [with R\sim135]. The SPHEREx team has proposed three specific science investigations to be carried out with this unique data set: cosmic inflation, interstellar and circumstellar ices, and the extra-galactic background light. It is readily apparent, however, that many other questions in astrophysics and planetary sciences could be addressed with the SPHEREx data. The SPHEREx team convened a community workshop in February 2016, with the intent of enlisting the aid of a larger group of scientists in defining these questions. This paper summarizes the rich and varied menu of investigations that was laid out. It includes studies of the composition of main belt and Trojan/Greek asteroids; mapping the zodiacal light with unprecedented spatial and spectral resolution; identifying and studying very low-metallicity stars; improving stellar parameters in order to better characterize transiting exoplanets; studying aliphatic and aromatic carbon-bearing molecules in the interstellar medium; mapping star formation rates in nearby galaxies; determining the redshift of clusters of galaxies; identifying high redshift quasars over the full sky; and providing a NIR spectrum for most eROSITA X-ray sources. All of these investigations, and others not listed here, can be carried out with the nominal all-sky spectra to be produced by SPHEREx. In addition, the workshop defined enhanced data products and user tools which would facilitate some of these scientific studies. Finally, the workshop noted the high degrees of synergy between SPHEREx and a number of other current or forthcoming programs, including JWST, WFIRST, Euclid, GAIA, K2/Kepler, TESS, eROSITA and LSST.Comment: Report of the First SPHEREx Community Workshop, http://spherex.caltech.edu/Workshop.html , 84 pages, 28 figure

    The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI): instrument and pre-launch testing

    Get PDF
    This paper describes the Heterodyne Instrument for the Far-Infrared (HIFI), to be launched onboard of ESA's Herschel Space Observatory, by 2008. It includes the first results from the instrument level tests. The instrument is designed to be electronically tuneable over a wide and continuous frequency range in the Far Infrared, with velocity resolutions better than 0.1 km/s with a high sensitivity. This will enable detailed investigations of a wide variety of astronomical sources, ranging from solar system objects, star formation regions to nuclei of galaxies. The instrument comprises 5 frequency bands covering 480-1150 GHz with SIS mixers and a sixth dual frequency band, for the 1410-1910 GHz range, with Hot Electron Bolometer Mixers (HEB). The Local Oscillator (LO) subsystem consists of a dedicated Ka-band synthesizer followed by 7 times 2 chains of frequency multipliers, 2 chains for each frequency band. A pair of Auto-Correlators and a pair of Acousto-Optic spectrometers process the two IF signals from the dual-polarization front-ends to provide instantaneous frequency coverage of 4 GHz, with a set of resolutions (140 kHz to 1 MHz), better than < 0.1 km/s. After a successful qualification program, the flight instrument was delivered and entered the testing phase at satellite level. We will also report on the pre-flight test and calibration results together with the expected in-flight performance

    Foreword

    No full text

    More whiffs of the aromatic universe

    No full text

    High Excitation ISM and Gas

    No full text
    International audienceAn overview is given of ISO results on regions of high excitation ISM and gas, i.e. H II regions, the Galactic Centre and Supernova Remnants. IR emission due to fine-structure lines, molecular hydrogen, silicates, polycyclic aromatic hydrocarbons and dust are summarised, their diagnostic capabilities illustrated and their implications highlighted

    Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS): following the water trail from the interstellar medium to oceans

    Get PDF
    International audienceOrbiting Astronomical Satellite for Investigating Stellar Systems (OASIS) is a space-based, MIDEX-class mission concept that employs a 17-meter diameter inflatable aperture with cryogenic heterodyne receivers, enabling high sensitivity and high spectral resolution (resolving power ≥106) observations at terahertz frequencies. OASIS science is targeting submillimeter and far-infrared transitions of H2O and its isotopologues, as well as deuterated molecular hydrogen (HD) and other molecular species from 660 to 80 μm, which are inaccessible to ground-based telescopes due to the opacity of Earth’s atmosphere. OASIS will have <20x the collecting area and ~5x the angular resolution of Herschel, and it complements the shorter wavelength capabilities of the James Webb Space Telescope. With its large collecting area and suite of terahertz heterodyne receivers, OASIS will have the sensitivity to follow the water trail from galaxies to oceans, as well as directly measure gas mass in a wide variety of astrophysical objects from observations of the ground-state HD line. OASIS will operate in a Sun-Earth L1 halo orbit that enables observations of large numbers of galaxies, protoplanetary systems, and solar system objects during the course of its 1-year baseline mission. OASIS embraces an overarching science theme of “following water from galaxies, through protostellar systems, to oceans.” This theme resonates with the NASA Astrophysics Roadmap and the 2010 Astrophysics Decadal Survey, and it is also highly complementary to the proposed Origins Space Telescope’s objectives
    corecore